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SOLUTION TO PROBLEM SET 4
Composed and formatted by E.A. Baltz and M. Strovink; proofed by D. Bacon

1. A chain of mass M and length L falls onto a
table. Initially, the chain is hanging so that its
lower end just touches the table. The chain is
falling in gravity, so the velocity of a link that is
falling is given by v = gt. The distance that the
chain has fallen is given by x = gt2/2. These two
facts tell us how much of the chain is on the table
at a given time. The density of the chain is M/L,
so the mass of chain on the table is just Mx/L:

M(t) =
1
2
M

L
gt2

The rate at which the mass is falling on the table
is just

d

dt
M(t) =

M

L
gt =

M

L
v(t)

At time t, the free elements of chain are moving
with speed v(t). This is the velocity they have
when they hit the table. The total rate at which
momentum is being transferred is

dp

dt
= v(t)

d

dt
M(t) =

M

L
v2(t)

Writing this in terms of M(t), the mass on the
table at time t, we get the following:

dp

dt
= 2M(t)g

The rate of change of momentum should be fa-
miliar to you from Newton’s second law which
states

F =
d

dt
p

Thus the table must be exerting this force on the
chain to slow it down. Remember also that the
table exerts a normal force on the chain which
is equal to the force of gravity

FN = M(t)g

Thus the total force that the table exerts on the
chain is three times the weight of the chain on
the table:

F (t) = FN (t) + 2M(t)g = 3M(t)g

2. The airspeed of a plane is v = 1000 m/sec.
The engines take in 80 kg of air per second and
mix it with 30 kg of fuel. The mixture is expelled
after it ignites, and it is moving at a velocity of
3000 m/sec relative to the plane. We can calcu-
late the thrust of this engine by calculating the
rate of change of momentum. The fuel is ejected
at a rate of 30 kg/sec, and it is given a velocity
of 3000 m/sec relative to the plane. It started
at rest with respect to the plane, so it need to
be given the full velocity. The rate of change of
momentum this corresponds to is

dp

dt
=

dm

dt
v = 30× 3000 = 90, 000 kg −m/sec2

The air also contributes to the momentum. It
is expelled at a rate of 80 kg/sec. Its velocity
is already 1000 m/sec relative to the plane, so it
only needs to gain 2000 m/sec of velocity in the
engine. The rate of change of momentum that
this corresponds to is

dp

dt
=

dm

dt
v = 80× 2000 = 160, 000 kg −m/sec2

The total rate of momentum transferred to the
exhaust by the plane’s engine is thus

dp

dt
= 250, 000 kg −m/sec2

This rate of momentum transfer is equal to the
thrust of the engine:

Fthrust = 250, 000 N

3. K&K problem 3.13 This problem concerns the
total force that a ski lift must exert to lift skiers
to the top of a hill. There will be two parts to
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the force. The first is just the force necessary to
oppose the force of gravity on the skiers. The sec-
ond is the force required to accelerate the skier at
the bottom from rest to the speed of the lift. The
rope is 100 meters long, and it is pulled at 1.5 me-
ters per second. On average, one skier uses the
tow rope every five seconds. This means the tow
rope travels 5× 1.5 = 7.5 meters between skiers,
so 100/7.5 = 131

3 skiers are on the rope on aver-
age. Each skier weighs 70 kg, so the average total
weight of the skiers who are on the rope is 933 kg.
The component of the force of gravity that must
be offset by the rope is determined by the angle
of the slope, which is 20◦. The component of the
acceleration of gravity that is directed down the
slope is just g sin 20◦ = 0.342g. Therefore the
force that the tow rope must exert to offset that
component of gravity is 933 × g × 0.342 = 3128
N. In addition, when a skier grabs the rope, he
must be accelerated to the speed of the rope,
1.5 m/sec. The change in momentum for the
skier is 1.5 × 70 = 105 kg-m/sec. This change
in momentum must be provided by the motor
once every five seconds, which is how often skiers
use the lift. On average, this force is 105/5=21
N. Therefore the total force that the lift must
provide is, on average, 3128+21=3149 N.

4. A two stage rocket carries a payload of mass
m. The total mass of the rocket is Nm, and
the mass of the second stage and payload is nm.
In each stage, the mass of the fuel is a fraction
(1-r) of the total, so the mass of the casing is a
fraction r of the total mass. The first stage has
a mass (N − n)m ,which is just the total minus
the mass of the second stage.

(a.) Since gravity can be ignored, the equation
for rocket motion derived in class reduces to

v(t)− v0 = V ln
M0

M(t)
.

To determine the velocity gain v from the first
burn, we need only to compute the mass of the
rocket at the end of the burn. The initial mass
is Nm, while the mass of fuel burned by the first
stage is (Nm− nm), the mass of the first stage,
multiplied by (1−r). The difference m(n+r(N−
n)) of these two masses is the residual mass after

the first burn. So the first burn velocity gain is

v = V ln
N

n+ r(N − n)
= V ln

N

Nr + n(1− r)
.

(b.) The method for this part is the same as for
part (a.) because the first equation guarantees
that the velocity gain of a rocket is independent
of its initial velocity. Here the initial mass is
the full mass of the second stage, nm. The final
mass is nm minus the mass of fuel consumed in
the second burn, which is (1− r)(nm−m). This
yields m(1 + r(n − 1)) for the final mass, and a
second burn velocity gain of

u = V ln
n

1 + r(n− 1)
= V ln

n

nr + (1− r)
.

(c.) Here we optimize n with all other pa-
rameters fixed. We wish to maximize v + u.
As V is fixed, we choose equivalently to mini-
mize Q = ln (V/(v + u)) in order to simplify the
algebra. From (a.) and (b.) we have

Q =
Nr + n(1− r)

N

nr + (1− r)
n

.

Carrying out the division,

Q = (r +
n

N
(1− r))(r +

1
n
(1− r)) .

Multiplying,

Q = r2 +
(1− r)2

N
+ r(1− r)(

n

N
+

1
n
) .

Only the last term depends on n:

d

dn

( n

N
+

1
n

)
= 0, n =

√
N .

(d.) For this value of n, the velocity gains from
the first and second burns are equal:

v + u = 2u = 2V ln
√
N

1 + r(
√
N − 1)

.

(e.) A single stage rocket has the same values of
N, r, and V. The initial mass is Nm, as in part
(a.), and the final mass is m + r(Nm − m), in
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analogy to part (b.) with N substituted for n.
The final velocity is

v = V ln
N

Nr + (1− r)
.

(f.) We want the final velocity of the payload
to be v = 10 km/sec, and we have a rocket with
exhaust velocity V = 2.5 km/sec and r = 0.1.
First let’s see if this can be done with a single
stage rocket. Plugging into the result from part
(e.), we see that

10 = 2.5 ln
N

0.9 + 0.1N

We try to solve for the necessary N

e4 =
N

0.9 + 0.1N
5.46N + 49.1 = N

N = −11.0 .

This answer doesn’t make any sense, which
means that a single stage rocket can’t do the
job. Let’s now look at the optimal two stage
rocket, using the result from part (d.):

10 = 5 ln
N

0.1N + 0.9
√
N

Again we try to solve for N :

e2 =
N

0.1N + 0.9
√
N

0.739N + 6.65
√
N = N

0.261
√
N = 6.65
N = 650 .

This rocket indeed can be built.

5. A boat of mass M and length L is floating at
rest. A man of mass m is sitting at the stern. He
stands up, walks to the bow and sits down again.

(a.) There is no force from the water, there-
fore the net force on the system is zero. The
momentum of the system is conserved, and the
center of mass remains at the same velocity, in

this case zero. Centering the boat at x = 0, we
can calculate the center of mass

XCM =
−(L/2)m
M +m

After the man is sitting at the bow, the center of
the boat will be at some position x, which means
that the man will be at a position x + (L/2).
However, the center of mass will be in the same
place.

Mx+m(x+ (L/2))
M +m

=
−(L/2)m
M +m

x = − mL

M +m
.

The boat has moved from its initial position.

(b.) This time, the water exerts a viscous force
F = −kv on the boat. We can show that the
boat will always return to its original position.
Newton’s second law gives the following equa-
tion. We want to use the total mass of the boat
plus the man, because we don’t want the man
accelerating relative to the boat

(m+M)v̇ = −kv ⇒
∫ v(t)

v0

dv

v
= − k

M +m

∫ t

t0

dt

This gives

v(t) = v0 exp
(
− k

M +m
(t− t0)

)

The distance traveled in this interval is just the
integral of the velocity

x(t) =
(M +m)v0

k

(
1− e−

k
M+m (t−t0)

)

Now we just need to find the initial veloc-
ity of the boat. When the man starts moving,
say he applies an impulse ∆p. This is the
same impulse that the boat must receive, but
in the opposite direction. Thus, the velocity
of the man is u = ∆p/m and the velocity of
the boat is v = −∆p/M . This means that
the velocity of the man relative to the boat
is u − v = (m + M)∆p/Mm. The man is
now walking at constant speed relative to the
boat. We plug in the initial velocity of the boat



4

v = −∆p/M to the solution of the differential
equation and we find the velocity of the boat

v(t) = −∆p

M
exp

(
− k

M +m
(t− t0)

)

At time τ = L/(u−v) = LMm/(M+m)∆p, the
man has reached the other end of the boat. The
velocity of the boat is

v(τ) = −∆p

M
exp

(
− k

M +m
τ

)

and it has traveled a distance

x(τ) = − (M +m)∆p

kM

(
1− exp

(
− k

M +m
τ

))

He again applies an impulse, but this time it is
−∆p. This gives the boat a change in velocity of
+∆p/M . The total velocity of the boat is now

v(τ) =
∆p

M

(
1− exp

(
− k

M +m
τ

))

Using this as the initial velocity, we again solve
the differential equation

v(t) =
∆p

M

(
1− e−

k
M+m τ

)
e−

k
M+m t

This is correct for all t > τ . We now calculate
the total distance traveled in the second part of
the trip. We take the final time to be t = ∞.

x(∞) =
(M +m)∆p

kM

(
1− exp

(
− k

M +m
τ

))

This is exactly the opposite of the distance
traveled in the first part. Thus the boat will
eventually return to its starting point.

(b′.) Here is a quick, elegant way to prove the
result of part (b.). It deserves full grading credit.
We do not mention only this method because,
as seen above, the problem is amenable to solu-
tion by systematic calculation as well as brilliant
insight.

Consider the impulse applied by the force
Fext of the water on the boat. To specify the
impulse, which is the time integral of Fext, we

must specify the time interval. We choose the
interval from t = 0−, just before any motion
starts, to t = ∞, at which time all motion must
have stopped due to effects of viscosity. At
both of those times the total momentum of the
boat+man system, whose rate of change is con-
trolled by Fext, is zero. Therefore the impulse in
question, which is equal to the difference P (∞)−
P (0−) of the boat+man system, must vanish.

The same impulse can also be written as

0 =
∫ ∞

0−
Fextdt

= −k

∫ ∞

0−

dx

dt
dt = −k

∫ ∞

0−
dx

= −k(x(∞)− x(0−)) ,

where x is the position of the boat. This proves
that the boat returns to its original position.

(c.) The result of part (b.) says that any viscous
force, no matter how small, results in the boat
returning to its original location. The result of
part (a.) says that when there is no viscous force,
the boat moves some distance. Mathematically,
the difference between the two results is due to
the order in which the limits are taken. In part
(a.), the first thing done is to take the limit
as k → 0, no viscous force. Then the limit as
t → ∞ is taken. If we look at the result of part
(b.), we first take the limit as t → ∞, then we
consider what happens when there is no viscous
force. This is an instance in which we cannot
reverse the order of taking limits. Denoting the
results from part (a.) and (b.) by capital letters,
we see that

lim
t→∞ lim

k→0
A �= lim

k→0
lim

t→∞B

So much for the reason why, mathematically, the
results of (a.) and (b.) are not the same. Phys-
ically, they are not in conflict. As the coefficient
k approaches zero in part (b.), the speed with
which the boat ultimately migrates back to its
original position approaches zero also. This can-
not be distinguished by physical measurement
from the limiting case (a).
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6. The Great Pyramid at Gizeh is h=150 m
high and has a square base of side s = 230 m. It
has a density ρ = 2.5 g/cc.

(a.) If all the stone is initially at ground level,
it must be raised to its position in the pyramid.
The work required to this is

W = Mghcm =
∫

ρgz dV

The volume element is the area of the square at a
height z times dz, the differential of height. The
square has side s at z = 0 and side 0 at z = h.
The width of the square decreases linearly with
height, so the width and area at height z is given
by

w(z) = s
(
1− z

h

)
A(z) = s2

(
1− z

h

)2

The volume element dV is given by dV =
A(z) dz. We can now perform the integral.
Expanding the polynomial in z

W = ρgs2

∫ h

0

(
z − 2

z2

h
+

z3

h2

)
dz

This is a simple integral to perform:

W = ρgs2h2

(
1
2
− 2

3
+

1
4

)
=

1
12

ρgs2h2

Plugging in the values for these constants, we get
the amount of work required to erect the pyramid

W = 2.43× 1012 Joules

(b.) The slaves employed in building this pyra-
mid consumed 1500 Calories per day, which is
6.3 × 106 joules per day. With 100,000 slaves
working for 20 years, this is 730 million slave-
days of work to build the pyramid. The total
energy the slaves spent is thus 4.6× 1015 joules.
The efficiency thus implied is low, ε = 5.3×10−4.
This does not necessarily reflect a low intrinsic
efficiency, since the slaves undoubtedly expended
most of their energy on activities other than lift-
ing the stone blocks to their final position.

7. A force f(t) has magnitude F at t = 0, mag-
nitude 0 at t = T , and it decreases linearly with

time. The direction remains the same. The
magnitude of the force is thus

f(t) = F

(
1− t

T

)

The force acts on a particle of mass m initially
at rest. The kinetic energy at t = T is just the
integral

K =
∫ T

0

F

(
1− t

T

)
dx =

∫ T

0

F

(
1− t

T

)
v dt

We can find v by applying Newton’s second law,
but once we have it, we don’t need to do the
integral because we know that K = mv2/2

f(t) = m
dv

dt
= F

(
1− t

T

)

We can just directly integrate both sides with
respect to t, with limits t = 0 and t = T

v(T ) =
F

2m
T

We now have the answer

K =
1
8
F 2T 2

m

8. Instantaneously after the collision of the bul-
let and block, after the bullet has come to rest
but before the frictional force on the block has
had time to slow it down more than an infin-
tesimal amount, we can apply momentum con-
servation to the bullet-block collision. At that
time the total momentum of the block+bullet
system is (M +m)v′0, where v′0 is the velocity of
the block+bullet system immediately after the
collision. Momentum conservation requires that
momentum to be equal to the initial momentum
mv of the bullet. Thus

v′0 =
mv

M +m
.

After the collision, the normal force on the
block+bullet system from the table is (M+m)g,
giving rise to a frictional force

µN = µ(M +m)g
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on the sliding block+bullet system. This causes
a constant acceleration µg of that system oppo-
site to its velocity.

Take t = 0 at the time of collision. After-
ward, the block+bullet system’s velocity in the
horizontal direction will be v′(t) = v′0 − µgt. It
will continue sliding until v′(t) = 0, at which
point the frictional force will disappear and it
will remain at rest. Solving, the time at which
the block-bullet system stops is

t = v′0/(µg) .

The distance traveled in that time is

x = v′0t−
1
2
µgt2 =

1
2
v′0t =

(v′0)
2

2µg
.

Plugging in the already deduced value for v′0,
this distance is

x =
( m

M +m

)2 v2

2µg
.


